Visual Exploration of High-Dimensional Data through Subspace Analysis and Dynamic Projections

نویسندگان

  • Shusen Liu
  • Bei Wang
  • Jayaraman J. Thiagarajan
  • Peer-Timo Bremer
  • Valerio Pascucci
چکیده

We introduce a novel interactive framework for visualizing and exploring high-dimensional datasets based on subspace analysis and dynamic projections. We assume the high-dimensional dataset can be represented by a mixture of low-dimensional linear subspaces with mixed dimensions, and provide a method to reliably estimate the intrinsic dimension and linear basis of each subspace extracted from the subspace clustering. Subsequently, we use these bases to define unique 2D linear projections as viewpoints from which to visualize the data. To understand the relationships among the different projections and to discover hidden patterns, we connect these projections through dynamic projections that create smooth animated transitions between pairs of projections. We introduce the view transition graph, which provides flexible navigation among these projections to facilitate an intuitive exploration. Finally, we provide detailed comparisons with related systems, and use real-world examples to demonstrate the novelty and usability of our proposed framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Exploration of High-Dimensional Data: Subspace Analysis through Dynamic Projections

Understanding high-dimensional data is rapidly becoming a central challenge in many areas of science and engineering. Most current techniques either rely on manifold learning based techniques which typically create a single embedding of the data or on subspace selection to find subsets of the original attributes that highlight the structure. However, the former creates a single, difficult-to-in...

متن کامل

A Framework for Exploring Multidimensional Data with 3D Projections

Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e.g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data t...

متن کامل

Visual Quality Assessment of Subspace Clusterings

The quality assessment of results of clustering algorithms is challenging as different cluster methodologies lead to different cluster characteristics and topologies. A further complication is that in high-dimensional data, subspace clustering adds to the complexity by detecting clusters in multiple different lower-dimensional projections. The quality assessment for (subspace) clustering is esp...

متن کامل

Less is More: Non-Redundant Subspace Clustering

Clustering is an important data mining task for grouping similar objects. In high dimensional data, however, effects attributed to the “curse of dimensionality”, render clustering in high dimensional data meaningless. Due to this, recent years have seen research on subspace clustering which searches for clusters in relevant subspace projections of high dimensional data. As the number of possibl...

متن کامل

ProxiLens: Interactive Exploration of High-Dimensional Data using Projections

As dimensionality increases, analysts are faced with difficult problems to make sense of their data. In exploratory data analysis, multidimensional scaling projections can help analyst to discover patterns by identifying outliers and enabling visual clustering. However to exploit these projections, artifacts and interpretation issues must be overcome. We present ProxiLens, a semantic lens which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Graph. Forum

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015